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Abstract— In this paper, modeling and 
performance evaluation of elliptical curve digital 
signature algorithm (ECDSA)–based secure 
clustering and symmetric key establishment in 
heterogeneous wireless sensor Networks 
(HWSNs) are presented. The symmetric key 
management scheme incorporates pairwise keys 
for secure communication among sensor nodes in 
the heterogeneous WSNs. The network model 
along with explanation regarding secure 
clustering and symmetric key establishment in the 
HWSNs are presented along with elaboration on 
how security is established in the initial phase of 
bootstrapping and clustering of these networks.  
Relevant mathematical models pertaining to the 
proposed ECDSA scheme are presented and then 
the performance of the ECDSA key distribution 
scheme is compared with other existing and 
commonly used distribution techniques. The 
results show that while providing similar 
probability of key sharing among nodes, the 
ECDSA scheme significantly minimizes the 
storage requirements and better link compromise 
probability. The results also show that the ECDSA 
scheme requires lower number of hops, hence, 
minimizes the probability of compromise and also 
saves sensor nodes energy. 
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1. Introduction
 The substantial rise of wireless sensor networks (WSNs) 
utility in diverse applications such as hostile, unattended, 
and inaccessible environments mandates the users to be 
more assured about the security compared to the 

survivability. The intrinsic nature of wireless sensor nodes, 
such as being subject to resource constraints (power, 
processing, and communication), easily reproduced, and 
possibly tampered with, causes other security strategies 
developed for infrastructure based wireless networks to be 
infeasible for WSNs [1, 2]. A typical example of these 
sensor nodes is the reduced function devices (RFDs) which 
are defined in the IEEE 802.15.4-2006 standard [3]. 
In as much as security strategies provide confidentiality, 
integrity, and authentication, which are critical for such 
applications, a secure and survivable infrastructure is 
always desired. Network survivability is defined as the 
ability of the network to fulfill its mission in the presence of 
attacks and/or failures in a timely manner [4]. Being a 
typical criteria to enhance scalability and survivability in 
the WSNs, clustering sensor nodes into some groups has 
been considered in several literatures [5–9]. Sequel to the 
energy constraint nature of wireless sensor nodes and their 
limited transmission range, establishing multi-hop routing 
toward the gateway is more efficient than having direct 
transmission [7]. Besides, transmission of data consumes 
the most energy compared to data computation. As a result, 
sending signals in an optimal power level is very important.  
From the security stand point, through compromising a 
sensor node by an adversary in a multi-hop path, the 
information on the node is revealed, and an attacker might 
be able to control the operation of the vulnerable node. 
Hence, for the purpose of providing security to 
communication links in WSNs, all messages should be 
encrypted and authenticated by any two individual sensor 
nodes engaged in message exchange [10]. 
Essentially, secure clustering and key establishments are 
exigent issues in the WSNs. Hence, an efficient key 
management scheme should be designed to share the 
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sensor nodes from performing expensive verification on the 
fake signatures broadcasted from the attackers. 
In addition, each sensor node 𝑛  is capable of determining 
the distance 𝑑  from the desired gateway 𝐺  and this is 

achieved by introducing received signal strength indicator 
(RSSI). The minimum threshold distance from the gateway 

𝐺  is considered as one-hop distance, 𝑑 min 𝑑 , 1 𝑖

𝑁 , in which sensor nodes within this distance can 

communicate with the gateway directly. 
The ECDSA algorithm is deployed at this point. This will 
be used by the gateway in each cluster to find which sensor 
nodes select the gateway 𝐺  as their cluster head. The 

gateway 𝐺  broadcasts a message requesting sensor nodes 

to inform the gateway if they are within the communication 
distance 𝑑 from the gateway. In this scenario, each sensor 
node 𝑛  encrypts its ID concatenated with its public key 
using the public key of the desired gateway. A sensor node 
transmits this message at maximum power to acknowledge 
the desired gateway in the top of its list ℓ  as follows: 

𝑛 → 𝐺 : 𝐴  𝐸 𝐼𝐷 ||𝑃    2  

Where, 𝐸 ⋅  represents the encryption function using the 

public key of gateway, 𝐺 . The gateway, 𝐺  then decrypts 

this message by using it private key as: 
𝐺 ∶  𝐷 𝐴  𝐼𝐷 ||𝑃    3  

In this scenario, the gateway 𝐺  compares the received 

public key from the sensor nodes with the ones embedded 
in its memory prior to deployment. This occurs to prevent 
an attacker from throwing illegitimate nodes into a cluster 
and mounting a denial-of-service (DoS) attack. 
As large number of sensor nodes respond to a gateway, 
avoiding contention is difficult. Since contention results in 
collisions, this affects the survivability of the network. 
Hence, a befitting medium access control (MAC) protocol 
is required to be installed in each sensor node. It should be 
noted that presuming sensor nodes to be time synchronized 
is not realistic because of the large number of nodes. To 
overcome this challenge, the contention-based and self-
stabilizing MAC protocol is incorporated here. Eventually, 
each gateway will make a list of all the sensor nodes in its 
cluster along with their IDs and public keys. 
Now, the public keys of the sensor nodes and gateways are 
authenticated. Hence, each gateway 𝐺  will require its one-

hop sensor nodes 𝑛  (e.g., 𝑛 , 𝑛  𝑛 0, and 𝑛  of cluster 2 
,as shown in Figure 1) within the cluster to broadcast a 
message to ask its one-hop neighbors in the cluster to report 
to 𝑛 . In this scenario, sensor node 𝑛  emerges as the 
parent node to the nodes in its one-hop neighborhood. In 
the same way, the other nearby nodes asks their one-hop 
neighbors to report themselves. Hence, every node within 
the cluster connects to the gateway in a single or multi-hop 
route, that is, 𝑛 , 𝑛 , 𝑛 , . . ., 𝑛 , where ℎ denotes the 

number of hops from a node 𝑛  to the gateway𝐺 . These 

sensor nodes send their information to the 𝑛   node, which 
informs the gateways about these sensor nodes. 
Every sensor node which has selected 𝐺  as the gateway 

and is within the desired cluster will be discovered by the 
gateway 𝐺 . It should be noted that a unique path exists 

from each node to the gateway as each node has just one 
parent. An appropriate routing algorithm is required to 
route the information to the gateway in each cluster. It 
defines the path that the packets can be pushed to get to the 
gateway. Hence, a minimum cost path algorithm can be 
used to find the optimized spanning tree rooted at the given 
node. 
The nodes that directly follow the root Node 𝑛   in the 
minimum cost tree are made up of the minimum 
neighborhood of node 𝑛 . The minimum cost routes 
between the gateway 𝐺  and the node 𝑛  are all contained in 

the minimum neighborhoods of the nodes. 
 
2.3 Secure and Survivable Routing 
This section presents routing algorithm for the sensor nodes 
to forward data toward the gateway in each cluster. If data 
from neighborhoods are highly tallied, then the minimum 
spanning tree (MST) is profitable in terms of survivability 
and network lifetime. However, in the scenario where there 
is flow correlation amongst sensor nodes, shortest path tree 
(SPT) should be integrated to achieve survivability and 
better network lifetime. Furthermore, shorter paths are more 
secure than the longer paths (this will be expanded in 
subsequent sections). It should be noted that using the 
shortest path limits the number of paths that can be used to 
relay data toward the gateway.  
The use of link estimation and parent selection (LEPS) 
scheme is deployed as a routing algorithm. In this scheme, 
each node watches all traffic received within the one-hop 
range, including route updates from the neighbor nodes. By 
applying the least cost path, it manages the nearest 
available neighbor node and decides the next hop. To locate 
a least cost path, one needs to compute the costs of all 
edges between each sensor node then obtain a set of least 
cost paths. To achieve this, a cost function defined in 
Equation 4 is applied. The following parameters are 
defined: 

i. 𝑓 𝐸 : denote the function of residual energy 

of the sensor node 𝑛 , ∀ 𝑖 ∈ 1, 2, … , 𝑁 . 
ii. 𝑑 , : denote the distance between the sensor 

node 𝑛  and 𝑛  
iii. 𝐹 𝑒 , : denote the error function between 

the sensor node 𝑛  and 𝑛 . 
Hence, the cost function for a link between sensor node 𝑛  
and 𝑛  can be computed as: 

𝐶 ,  𝑑 , 𝑓 𝐸 𝐹 𝑒 ,   4  
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Where 𝛼 denotes the free space loss exponent and typically 
𝛼 2 . The error function relates to the maximum data 
buffered in sensor node 𝑏 and the distance between sensor 
node 𝑛  and 𝑛 . This can be written as: 

𝐹 𝑒 ,  𝑐 ⋅
,

   5  

Where 𝑐  represents a constant coefficient. To obtain the 
least cost path from a sensor node 𝑛  to the gateway 𝐺 , the 

quantity of hops should be considered. 
 
2.4 Symmetric Key Establishment 
Once secure clustering is set up, broadcast authentication, 
and determining the desired routing algorithm among 
sensor nodes and gateways, sensor nodes establish secured 
communication between each other to access the gateway 
securely in a multi-hop path. Since gateways have 
knowledge of the one-hop neighbors of the sensor nodes 
and also have enough information to control the sensor 
nodes, they send pairwise keys to each sensor node and its 
potential one-hop neighbors. To accomplish this, gateway 
𝐺  will transmit the pairwise key to the sensor node 𝑛   

which is easily found between its neighbors 𝑛  with regards 
to the least cost path routing algorithm. 
Above all, the symmetric key generated for the sensor node 

𝑛  and 𝑛 , which is, 𝐾 , is encrypted using the public key 

of the sensor node 𝑛  ,which is 𝐸 𝐾 , for 1 𝑖, 𝑖

𝑁. After the generation and encryption of the symmetric 
key, each gateway 𝐺  unicast this message to the sensor 

node 𝑛 . Each sensor node decrypts this message via its 

own private key 𝑃   and gets the symmetric key 𝐾 . Since 

this message is encrypted by the public key (following the 
concept of ECC) of every sensor node, then revealing the 
symmetric key is not an easy task to the attacker. For 
instance, in Figure 1, the sensor node 𝑛  will get the 

symmetric keys for nodes 𝑛 , 𝑛 , 𝑛  as 𝐾 , 𝐾 , 𝐾 , 

respectively. 
2.5 Unicast Authentication 
One pertinent issue to address is how sensor node 𝑛  
ensures that the encrypted symmetric key, which is 

𝐸 𝐾  originates from the gateway 𝐺  and not from an 

attacker. A proposed solution to this is the use of  the 
elliptical curve digital signature algorithm (ECDSA) 

authentication. To ensure that the message 𝐸 𝐾  is 

unicasted from the gateway 𝐺 , the elliptic curve digital 

signature can be computed by the gateway on the message. 
Hence, sensor node 𝑛  can check the signature using the 
public key gateway 𝐺 , and this guarantees that the message 

emanated from a legitimate gateway 𝐺 , and not from an 

attacker. One of the requirements for this scheme is 𝑁 times 
signature generation by the gateways, and all the sensor 
nodes have to verify and decrypt the unicasted message. 

Notably, the computation cost will increase since the 
verification of signature is expensive operation. However, 
some of the overheads can be reduced by a one-time 
signature. In that case, each sensor scheme and its 
corresponding gateway are allowed to get a shared 
symmetric key during the first broadcast authentication 
integrating the elliptic curve Diffie-Hellman (ECDH) 
method. 
Then, in deploying symmetric key, the unicast 
authentication can be performed by generating a message 
authentication code (MAC). Hence, any unicast from the 
gateway can be authenticated by the sensor nodes. 
Authentication methods simply mean overheads in 
computation and communication times. Hence, there is 
need to strike a balance between the required level of 
security in the authentication and the costs ( in terms of 
computation and communication times), else the arising 
overheads might be against the survivability of the network. 
Apart from giving guaranty for confidentiality and 
authentication, it is imperative to ensure that data is recent, 
and no attacker replayed old messages. A sensor node 
𝑛  can accomplish this by using nonce (which is an 
unpredictable random number). In the presented scheme, 
before unicasting the symmetric keys by the gateways, 
sensor node 𝑛  can transmit a key request message to the 
gateway 𝐺  accompanied with an arbitrary nonce, that is, 

𝑁   and encrypted by 𝑃 . Hence, any time a gateway seeks 

to unicast the symmetric key (encrypted by 𝑃 ) to node 𝑛  , 

gateway 𝐺 ,  includes its arbitrary nonce, that is, 𝑁  and 

𝑁  to the unicast message. Once this exchange is done, 

node 𝑛   can ascertain that the message is recently initiated 
and is not a replay of old messages. 
 
2.6 Survivable Secure Connectivity 
In order to effectively present the connectivity in each 
cluster of the proposed infrastructure for WSNs, let a graph 
𝐺 𝑉, 𝐸  be defined to model the connectivity between a 
set of sensor nodes. Each sensor node is denoted by a 

vertex in 𝑉, 𝑉 𝑛 , 𝑛 , … , 𝑛 , where 𝑁  is the number of 

sensor nodes located within each cluster. For any random 
two nodes 𝑛  and 𝑛  in 𝑉, the edge 𝑛 , 𝑛  ∈ 𝐸  exists if 
and only if the nodes are located within communication 
range of each other. Node degree is considered to be the 
number of edges connected to node. To further illustrate 
this, consider Figure 1, deg 𝑛 3. Suppose the node 𝑛  
seeks to send information to node 𝑛 , let 𝑃 𝑛 , 𝑛  
represents the received power at 𝑛 . In this situation, the 
gateway 𝐺  matches the SNR with the environment noise 

threshold, and if the result is above the noise threshold, then 
𝑛  can send a message to the 𝑛 . In this circumstance, these 
nodes have accomplished survivable connectivity and the 
edge 𝑛 , 𝑛   exists. To obtain the 𝑃 𝑛 , 𝑛   in each 
cluster, the following procedure is followed and completed. 
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Where ℎ denotes the maximum number of hops between a 
node and a gateway as depicted in Figure 4. By considering 
Equation 8, it can be inferred that 

𝑁 𝑛ℎ    14  
Then, the number of hops can be approximated as 

ℎ   15  

It is worthy to mention that in a real scenario with a fixed 
range of gateway, 𝑅, increasing the range of each sensor 
node, 𝑟, should be accompanied by reducing the quantity of 
hops to conserve energy and node lifetime. Hence, the 
average number of sensor nodes inside a cluster is constant. 
 
2.9 Link Compromise Probability 
The previously proposed schemes were built on the 
foundation of probabilistic key pre-distribution, and there is 
a known trade-off between the secure connectivity, 
resiliency against node capture, and memory storage. 
Suppose 𝑥 nodes are arbitrarily setup within a cluster. Then, 
resiliency could be defined in this context as the probability 
that the link between two fixed non-compromised nodes is 
not affected. The inverse of resiliency is coined which is 
also known as the fraction of the network that can be 
compromised. In multi-hop routing, it is basically obvious 
that choosing short multi-hop paths in place of long multi-
hop paths is advantageous. This is due to the fact that the 
length of a multi-hop path (number of hops) increases as 
the probability of path compromise increases. Therefore, 
for the proposed scheme, it is necessary to compute the 
probability of the link between sensor node 𝑛  and gateway 
𝐺  to be compromised without capturing them directly. Let 

us assume the following: 
i. 𝑥 : denotes the probability of node 𝑛  to be 

compromised 
ii. ℎ: denotes the number of hops from a sensor 

node 𝑛  to reach the gateway 𝐺  

Hence, the probability that the given path which is 
compromised 𝑃 𝑙 , assuming that the sensor node 𝑛  and 
gateway 𝐺  are not compromised, can be expressed as 

𝑷 𝒍
𝑷𝒓 𝒍𝒊𝒏𝒌 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒔𝒆𝒏𝒔𝒐𝒓 𝒏𝒐𝒅𝒆 𝒏𝒊 𝒂𝒏𝒅 𝒕𝒉𝒆 𝒈𝒂𝒕𝒆𝒘𝒂𝒚 𝑮𝒋 𝒊𝒔 𝒄𝒐𝒎𝒑𝒓𝒐𝒎𝒊𝒔𝒆𝒅  

𝟏 𝑷𝒓 𝒏𝒐 𝒏𝒐𝒅𝒆 𝒊𝒏 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒊𝒔 𝒄𝒐𝒎𝒑𝒓𝒐𝒎𝒊𝒔𝒆𝒅  
𝟏 ∏ 𝟏 𝒙𝒊

𝒉 𝟏
𝒊 𝟏   (16) 

After establishing the routing algorithm, the probability of 
node compromising directly or indirectly will be different 
since the number of sensor nodes in neighborhood is 
different. This compromise probability is based on the 
attacker model. Since our routing algorithm is based on 
minimum surrounding degree, the degree of each node is 
reduced to consequently decrease the indirect link 
compromise probability and have better resiliency against 
node capture attack. 
 
2.10 Storage Saving Measurement 

The memory storage requirement in sensor nodes and 
gateways are analyzed in this section. Considering the 
proposed network model, the number of gateways are far 
less than the number of sensor nodes 𝐺 ≪ 𝑁 . Once the 

gateway is preloaded with 𝑃 , 𝑃 , 𝑃 , then the memory 

storage requirement for each gateway can be computed as 
𝑀  2 𝑁 𝐵    17  

Where, 𝐵  denotes the key size for public cryptography. 

Conversely, each sensor 𝑛  is preloaded with 𝑃 , 𝑃 , 𝑃 . 

During post deployment phase, each sensor node stores 
extra symmetric keys to communicate with their neighbors. 

This key can be represented as 𝐾 , 

𝑀  𝐺 2 𝐵 𝑑 𝐵   18  
Where 𝐵 , represents the size of symmetric cryptography 
and 𝑑  denotes the maximum neighborhood degree. 
Since the gateways are tamper proof, the number of keys 
stored in each sensor node can be further reduced by 
incorporating the same pair of private and public keys for 
all the gateways, that is, 𝑃  and 𝑃 . Hence, the overall 
memory storage requirement for each sensor node can be 
expressed as 

𝑀  3 𝐵 𝑑 𝐵   19  
 

2.11 Communication and Computation Overheads 
Intrinsically, randomized key pre-distribution approaches 
from previous literatures suffer from lack of structure 
because the key ring 𝑘 is chosen randomly from a key pool. 
As a result, the communication complexity denoted as  
𝛩 𝑘 , and increasing 𝑘  yields a dramatic increase in 
communication overhead. The number of messages 
transferred in the network is a metric which relates to the 
power consumption and communication overhead. It is 
obvious that transmission is the most costly operation on a 
sensor node (for instance, the cost of transmitting one bit of 
data using MICA mote sensor node is approximately 
equivalent to processing 1000 CPU instructions) [12]. 
Hence, in this paper the communication overhead is defined 
as the sum of packets sent and received per cluster in the 
network. The average number of packets can be represented 
as the sum of the following. 

i. Packet transmitted from 𝐺  to 𝑛  as message 𝐵 

in each cluster 
ii. Packet transmitted by each sensor node 

towards the gateway within the cluster as 
message 𝐴 

iii. Unicast encrypted messages (pairwise secrete 
keys) that each gateway sent to the nodes 

within its cluster 𝐾  

2.12 Cost of Secure Clustering and Pairwise Key 
Establishment 
The number of encryptions and decryptions during secure 
clustering and pairwise key establishment is presented in 
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Table  1. Hence the cost of secure clustering 𝐶  can be 
computed as follows. 

𝐶 𝐺 𝐶 𝑁 𝐶 𝑁 𝐶 ⋅

𝑁 𝐶 ⋅  20  

Where, 𝐶 denotes the cost of generating an elliptical 

curve digital signature with the use of private key of 
gateway 𝐺 , 𝐶  denotes the cost of verifying the 

signature using the public key of gateway 𝐺  by sensor node 

𝑛 , 𝐶 ⋅  denotes the cost of encryption using public key 

of gateway 𝐺  by sensor node 𝑛 , and 𝐶 ⋅  denotes the 

cost of decryption using the private key of the gateway 𝐺  

performed by the gateway 𝐺 . 

 
Table  1: Number of encryption/decryption during secure 

clustering and pairwise key establishment. 
Note: elliptical curve digital signature is 

abbreviated as ECDS 
 
Operation No. of Computations 

Secure Clustering 
ECDS generation and 
broadcast 𝐺 → 𝑛  

𝐺 

ECDS verification by 𝑛  𝑁 

Encryption 𝐸 , 𝑛 → 𝐺  𝑁 

Decryption 𝐷 ⋅  by 𝐺  𝑁 

Pairwise key establishment 
ECDS and encryption by 
𝐸 ⋅ , 𝐺 → 𝑛  

𝐺 

ECDS verification and 
decryption by 𝐷 ⋅  

𝑁 

 
3.  Results and discussion 
3.1 Performance Evaluation of Key Distribution 
The proposed key distribution scheme is compared with 
other existing and commonly used distribution techniques. 
The result has proven that while providing similar 
probability of key sharing among nodes, the proposed key 
distribution scheme scheme significantly minimizes the 
storage requirements. The key pool size ‖𝐾‖ is a crucial 

parameter because in arbitrary key sharing schemes the 
amount of storage reserved for keys in each node is likely 
to be a preset constraint, which makes the size of the key 
ring ‖𝑅‖  a constant parameter. After R is set, then for 
larger values of ‖𝐾‖ , the probability that two legitimate 
nodes will share a key is small. In addition, the probability 
that a randomly selected link is compromised when a node 
that is at neither end of the compromised link decreases by 
increasing the value of ‖𝐾‖. 
In Figure 5, the range of key pool size is from 1,000 to 
50,000 and key ring size is fixed to 100 for basic scheme 
proposed in [12]. For asymmetric pre-distribution AP 
scheme proposed in [12], sensors with high resources (H-
sensor) keys are 500 and sensors with low resources (L-
sensor) keys are 20. For the proposed scheme elliptical 
curve digital signature algorithm (ECDSA) in this research, 
the number of key chains 𝑀  varies from 100 to 1,000, 
𝑆  90 , and 𝑟  2 . Then, the number of key chains 
𝑀 0.02  times of the corresponding key pool size. 

Figure 5  also depicts that for the proposed scheme, the 
same probability of key distribution among nodes can be 
accomplished by just loading 2 generation keys in sensor 
node as compared to 100 keys in basic scheme, and 20 keys 
in AP scheme. For example, if there exist 10 H-sensors and 
1000 L-sensors in an heterogeneous sensor network (HSN), 
where each L-sensor is preloaded with 2 generation keys 
and each H-sensor is preloaded with 100 generation keys, 
the total memory requirement for our proposed scheme in 
the unit of key length is 2 × 1000 + 100 × 10 = 3,000. 
However, in AP strategy, if each L-sensor is loaded with 10 
keys and each H-sensor is loaded with 500 keys, the total 
memory requirement for storing these keys will be 
500×10+ 1000×20 = 25,000, which is about 8 times larger 
than the proposed scheme. In addition, for a homogeneous 
sensor network with 1,000 L-sensors, where each L-sensor 
is preloaded with 100 keys, the memory requirements will 
result in 100 × 1000 = 100,000, which is 33 times larger 
than the proposed scheme. 
Figure 6 illustrates that the probability of key distribution 
among nodes and gateways increases by a minute increase 
in the number of preloaded generation keys in L-sensors. 
For example, if preloaded keys are increased from 2 to 5, 
the key distribution probability increases from 0.5 to 0.8 
approximately, for 400 key chains. 
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totally connected. From Equation 17, it can be deduced that 
the number of keys stored in each gateway is 1002 keys. 

 
4. Conclusion 
An approach for securing symmetric key used in clustered 
Heterogeneous Wireless Sensor Networks (HWSNs) using 
elliptical curve digital signature algorithm (ECDSA) is 
presented. The network model along with explanation 
regarding secure clustering and symmetric key 
establishment in the HWSNs are presented along with 
elaboration on how security is established in the initial 
phase of bootstrapping and clustering of these networks.  
Relevant mathematical models pertaining to the proposed 
ECDSA scheme are presented and then the performance of 
the ECDSA key distribution scheme is compared with other 
existing and commonly used distribution techniques. The 
results show that while providing similar probability of key 
sharing among nodes, the ECDSA scheme significantly 
minimizes the storage requirements. It also minimizes the 
probability of compromise and also saves sensor nodes 
energy. 
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