
Journal of Multidisciplinary Engineering Science and Research (JMESR) 
 

Vol. 1 Issue 3, September - 2022 

www.jmesr.co.uk 
JMESRN42350045 188 

Determination Of Visibility Time Of Leo And 
Meo Satellites With Circular Orbits 

 
  
 

Kufre M. Udofia 
Department of Electrical/Electronic and Computer Engineering, University of 

Uyo, Nigeria 
kmudofiaa@uniuyo.edu.ng 

 

  

 

Abstract— In this paper, determination of the 
visibility time of Low Earth Orbit (LEO) satellite and 
Medium Earth Orbit (MEO) satellite with circular 
orbits is presented. The study presented relevant 
mathematical expressions for computing the visibility 
time of the satellites in two different scenarios, namely, 
the visibility time without restriction on the minimal 
zenithal (θ) angle, as well as the case where there is 
restriction on the minimal zenithal angle. Sample LEO 
(Iridium) satellite with altitude of 780 km and MEO 
satellite with altitude of 20,000 km were used for 
numerical examples. The results of the visibility 
computation for the Iridium satellite for the case of no 
restriction on the minimal zenithal angle (that is, with θ 
= 0°) is 903.96 seconds. The case where there is 
restriction on the minimal zenithal angle, with θ  = 5°, 
the visibility time is 750.76 seconds. Also, with θ  = 15°, 
the visibility time is 522.62 seconds. The visibility time 
of a MEO satellite with θ = 0° is 18003.66 seconds, with 
θ = 5° the visibility time is 16832.20 seconds, and with θ 
= 15° the visibility time is 14565.77 seconds. Simple 
exponential expressions relating the visibility time to θ 
for the LEO and MEO satellites were derived from the 
results. In all, the MEO satellite has higher visibility 
time than the LEO satellite. Also, the higher the 
restriction on the minimal zenithal angle, the lower the 
visibility time of the satellite. 

Keywords— LEO satellite, visibility time , Zenithal 
angle,  Iridium satellite, Circular Orbits , MEO satellite 

 
1. Introduction 

Over the years, satellite technologies have been 
developed and deployed for diverse applications 
across the globe [1,2,3]. The suitability of a 
satellite for a given application depends on 
certain parameters pertaining to the satellite. 
Accordingly, today, there are different kinds of 
satellites classified based on different criteria. 
One of the criteria for classifying satellites is 
based on the height of the satellite orbit. In this 
wise, there are Low Earth Orbit (LEO) satellite, 
Medium Earth Orbit (MEO) satellite, Geo-
synchronous (GEO) satellite and High Elevation 
Orbit (HEO) satellite 
[4,5,6,7,8,9,10,11,12,13,14,16,17]. The orbital 

height affect the visibility of the satellite from a 
given earth station location as well as the 
elevation angle of the satellite–earth station link. 
Furthermore, the orbital path can assume different 
shapes, namely, circular, elliptical, near circular, 
highly elliptical, parabolic and hyperbolic paths. 
In this paper, the focus is on the visibility of LEO 
and MEO satellites with circular orbit.  
Generally, satellites communication is a wireless 
communication which can exist between earth 
station and the satellite or a satellite with other 
satellite [18,19,20]. Accordingly, like other 
wireless communication systems, the ability to 
receive signal from a satellite depends on a 
number of factors like the propagation loss, the 
transmitter power, the communication path 
length, among others 
[21,22,23,24,25,26,27,28,29,30]. In addition, the 
motion of satellite also affect satellite visibility. 
Notably, the visibility of satellite indicates the 
ability of receiver to detect or sense or receive 
signal from the satellite due to the relative 
position of the satellite with respect to the 
receiver. Particularly, different orbital shapes 
affect the percentage of time the satellite can be 
visible from a given earth station. Also, the range 
of applicable elevation angle for visibility can 
also determine the percentage of time the satellite 
can be visible. Accordingly, the study examined 
the visibility time of the satellites in two different 
scenarios, namely, the visibility time without 
restriction on the minimal zenithal angle, as well 
as the case where there is restriction on the 
minimal zenithal angle. Requisite analytical 
models for the computation of the visibility of the 
satellite are presented. Also, sample satellite 
parameters are used for numerical examples. 
  

2.  Methodology 
The study considered the visibility time for 
satellite on circular orbit in two different 
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the Iridium satellite for the case of no restriction 
on the minimal zenithal angle (that is, with θ = 
0°) are shown in Table 1. In this case, the 
visibility time of the Iridium satellite is 903.96 
seconds, which is equivalent to 15.07 minutes or 
0.25 hours. The results of the visibility 
computation for the Iridium satellite for the case 
where there is restriction on the minimal zenithal 
angle, with θ  = 5°  are shown in Table 2 while 
that with θ = 15°  are shown in Table 3. The 
results showed that with θ  = 5°, the visibility 

time of the Iridium satellite is 750.76 seconds, 
which is equivalent to 12.51 minutes or 0.21 
hours. Similarly, with θ  = 15°, the visibility time 
of the Iridium satellite is 522.62 seconds, which 
is equivalent to 8.71 minutes or 0.15 hours. The 
graph of the visibility  time, Δtv  (s) versus the minimum 

angle  above  local  horizon,  θ  (°)  for the LEO  Iridium 
satellite is shown in Figure 3. The analytical 
expression relating Δtv  (s)    to    θ for the LEO  
Iridium satellite is given in Eq 13.

 
Table 1 The results of the visibility computation for the Iridium satellite for the case of no restriction on 

the minimal zenithal angle (that is, with θ = 0°) 

Altitude, 
h (Km) 

Orbital 
period,To (s) 

Minimum  angle  
above local horizon, 

θ (°) 

Zenithal 
angle, φ 

Angle β  
(rad) 

Angle β   
(deg) 

Visibility 
time, Δtv 

(s) 

Visibility 
time, Δtv 
(min) 

Visibility 
time, Δtv 
(hour) 

780  6027.1  0.0  90  0.47118  27.00  903.96  15.07  0.25 

 
Table 2 The results of the visibility computation for the Iridium satellite for the case where there is 

restriction on the minimal zenithal angle (with θ = 5°) 

Altitude, h 
(Km) 

Orbital 
period,To (s) 

Minimum  
angle  above 

local horizon, θ 
(°) 

Zenithal 
angle, φ  

Angle β  
(rad) 

Angle β   
(deg) 

Visibility 
time, Δtv 

(s) 

Visibility 
time, Δtv 
(min) 

Visibility 
time, Δtv 
(hour) 

780  6027.1  5.0  85  0.391329  22.42  750.76  12.51  0.21 

 
Table 3 The results of the visibility computation for the Iridium satellite for the case where there is 

restriction on the minimal zenithal angle (with θ = 15°) 

Altitude, h 
(Km) 

Orbital 
period,To (s) 

Minimum  
angle  above 

local horizon, θ 
(°) 

Zenithal 
angle, φ  

Angle β  
(rad) 

Angle β   
(deg) 

Visibility 
time, Δtv 

(s) 

Visibility 
time, Δtv 
(min) 

Visibility 
time, Δtv 
(hour) 

780  6027.1  15.0  75  0.272409  15.61  522.62  8.71  0.15 

 

  
Figure 3  The plot of the visibility time, Δtv (s) versus the minimum  angle  above local horizon, θ (°) for the LEO  

Iridium satellite 
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Δtv (s) = 902.78e-0.036(θ°)     (13) 

Apart from the LEO satellite, the visibility of a 
MEO satellite with circular orbit at an altitude of 
20,000 Km is also considered. The results of the 
visibility computation for the MEO satellite for 
the case of no restriction on the minimal zenithal 
angle (that is, with θ = 0°) are shown in Table 4. 
In this case, the visibility time of the MEO 
satellite is 18003.66  seconds, which is equivalent 
to 300.06  minutes or 5 hours. The results of the 
visibility computation for the MEO  satellite for 
the case where there is restriction on the minimal 
zenithal angle, with θ  = 5°  are shown in Table 5 

while  that with θ = 15°  are shown in Table 6. 
The results showed that with θ  = 5° , the 
visibility time of the MEO satellite is 16832.20 
seconds, which is equivalent to 280.54  minutes or  
4.68 hours. Similarly, with θ  = 15°, the visibility 
time of the MEO satellite is 14565.77  seconds, 
which is equivalent to 242.76  minutes or 4.05 

hours. The graph of the visibility  time,  Δtv  (s) versus 
the minimum  angle  above  local  horizon,  θ  (°)  for the 
MEO satellite is shown in Figure 4. The 
analytical expression relating  Δtv  (s)    to   θ for the 
MEO satellite is given in Eq 14. 

Table 4 The results of the visibility computation for the MEO satellite for the case of no restriction on the 
minimal zenithal angle (that is, with θ = 0°) 

Altitude, h 
(Km) 

Orbital 
period, To 

(s) 

Minimum  angle  
above local 
horizon, θ (°) 

Zenithal 
angle, φ  

Angle β  
(rad) 

Angle β   
(deg) 

Visibility 
time, Δtv (s) 

Visibility 
time, Δtv 
(min) 

Visibility 
time, Δtv 
(hour) 

20000  42636.1  0.0  90  1.32658  76.01  18003.66  300.06  5.00 

 
 

Table 5  The results of the visibility computation for the MEO  satellite for the case where there is 
restriction on the minimal zenithal angle, with θ  = 5° 

Altitude, 
h (Km) 

Orbital 
period, To (s) 

Minimum  angle  
above local horizon, 

θ (°) 

Zenithal 
angle, φ 

Angle β  
(rad) 

Angle β   
(deg) 

Visibility 
time, Δtv 

(s) 

Visibility 
time, Δtv 
(min) 

Visibility 
time, Δtv 
(hour) 

20000  42636.1  5.0  85  1.240261  71.06  16832.20  280.54  4.68 

 
 

Table 6  The results of the visibility computation for the MEO  satellite for the case where there is 
restriction on the minimal zenithal angle, with θ  = 15° 

Altitude, 
h (Km) 

Orbital 
period, To (s) 

Minimum  angle  
above local horizon, 

θ (°) 

Zenithal 
angle, φ 

Angle β  
(rad) 

Angle β   
(deg) 

Visibility 
time, Δtv 

(s) 

Visibility 
time, Δtv 
(min) 

Visibility 
time, Δtv 
(hour) 

20000  42636.1  15.0  75  1.073262  61.49  14565.77  242.76  4.05 
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Figure 4  The plot of the visibility time, Δtv (s) versus the minimum  angle  above local horizon, θ (°) for the MEO 

satellite 
Δtv (s) = 18030e-0.014(θ°)    (14) 

 
4. Conclusion 
Computation of the visibility time of Low earth 
orbit (LEO) satellite and Medium Earth Orbit 
(MEO) satellite is presented. The study 
considered the visibility of the satellites without 
restriction on the minimal zenithal angle, as well 
as the case where there is restriction on the 
minimal zenithal angle. Sample LEO and MEO 
satellites were used for numerical examples. The 
results showed that the MEO satellite has higher 
visibility time than the LEO satellite. Also, the 
higher the restriction on the minimal zenithal 
angle, the lower the visibility time of the satellite.  
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