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Abstract— In this paper a comparative analysis of 
generative adversarial network models for the 
generation of a unique African fabric pattern is 
presented. Specifically, this study adopted the 
intuitiveness of generative Artificial Intelligence 
(AI) to build two different versions of Generative 
Adversarial Network (GAN) model and Self-
Attention Generative Adversarial Network 
(SAGAN) model that automatically generate new 
unique designs and patterns of Ankara using the 
input generated from the Ankara dataset created 
for the study. In order to successfully automate 
the design of Ankara, a total of 3000 images of 
different patterns of Ankara were snapped at 
different locations/ markets in Akwa Ibom state to 
form the research dataset. The raw images were 
pre-processed into a uniform pixel size of 200 X 
200 pixels before feeding them into the Generative 
Adversarial Network (GAN), and Self-Attention 
Generative Adversarial Network (SAGAN) models 
considered in the study. The two models were 
trained using Tensorflow deep learning framework 
on Google Collaboratory. Precision, recall and F-
measure values were used in evaluating the 
models’ performances. The SAGAN gave better 
precision, recall, f-measure and Frechet Inception 
Distance (FID) values in comparison with GAN 
model. Hence, with respect to this study, the 
SAGAN model is selected as the best performing 
model for generating Unique African prints with 
appealing colours and patterns depicting African 
culture. 

Keywords— Tensorflow , African fabric, Self-
Attention Generative Adversarial Network 
(SAGAN), Google Collaboratory , Artificial 
Intelligence (AI), Generative Adversarial Network 
(GAN) 

1. Introduction 
Africans locally and internationally have been 

identified and dignified by their unique dressing styles and 
fashion [1,2,3,4,5,6,7]. Readily available and highly sought 
after African print is Ankara. The Ankara uses are so 
diverse and ranges from the sewing of the Ankara material 
with different styles at church events, wedding, coronation 
to using the print as accessories for bags, shoes and 
jewelleries. However, Ankara is still being printed locally 
using a wax-resist dyeing technique called batik 
[8,9,10,11,12,13,14]. This traditional method of design and 
printing led to poor printing designs since the success of the 
method is subjected to the designer’s ingenuity, creativity 
and fashion inclination.  
 Accordingly, this paper adopted generative 
Artificial Intelligence (AI) in machine learning 
[15,16,17,18,19,20,21] to develop two African Ankara 
pattern generating models, namely; Generative Adversarial 
Network (GAN) [22,23,24,25,26,27,28,29,30] model and 
Self-Attention Generative Adversarial Network (SAGAN) 
model [31]which succeeded in generating unique African 
prints after training and fine-tuning the model parameters. 
Particularly, dataset consisting of collection of numerous 
snapshots of locally sourced African Ankara prints are used 
to train the models and in turn use the models to 
subsequently generate unique African Ankara design 
patterns. Comparative analysis is conducted on the 
performance of the two models using Frechet Inception 
Distance (FID), precision, recall and f-measure scores. The 
best model is then recommended for use in generating the 
African Ankara design patterns.   
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2. Methodology 
In this paper, development, training and evaluation of two 
competing models for generating new but unique African 
Ankara design styles are presented. The two models were 
are the popular GAN and SAGAN. Basically, Generative 
Adversarial Networks, denoted as GAN is a generative 
model architecture, an unsupervised learning that is based 
on deep-learning methods which can be used to generate 
new patterns or images from set of input patterns or images 
dataset. On the other hand, Self- Attention Generative 
Adversarial Networks denoted as SAGAN is a modified 
version of GAN which includes attention-driven and long-
range dependency modelling in the image generation 
process.  The two models are studied and used to generate 
new Ankara cloth design patterns from set of input design 
pattern images and their effectiveness is evaluated and 
compared using some selected performance metrics. The 
research process work flow used in the study is shown in 

Figure 1. As outlined in Figure 1, the processes making up 
the whole research implementation started out with 
gathering of the study dataset which comprises of images of 
different African Ankara fabrics design patterns. The next 
stage in the research process handled the pre-processing of 
the images gathered in phase 1 to form the study dataset.  
This study experiments were carried out on Google co-
laboratory. The fully setup GAN and SAGAN models  were 
then subjected  to intensive iterative training  in mini 
batches  with each training epoch made to go through 
Freschet Inception Distance (FID), precision, recall and f-
measure metric  calculations for evaluation. The fully 
trained models are saved and deployed on google co-
laboratory. These models are then used in printing unique 
Ankara using seed values ranging from zero (0) to infinity 
(∞) in order to enforce the uniqueness. 
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Figure 1: The research process work flow   
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spike in the FID score of the SAGAN model after the first epoch shows abnormality. 
Table 1: SAGAN and GAN  FID metric values 

Training Epochs FID Value for SAGAN  model FID Value for GAN  model 

1 72.349 317.306 

2 88.345 237.639 

3 74.139 161.824 

4 69.795 149.897 

 

 
Figure 15 The graph plot of the SAGAN and GAN  FID metric values versus training epoch 

 
The results on the Precision, Recall and F- Measure metrics 
for the SAGAN and GAN model are shown in Table 2 and 
figure 16. The results in Table 2 and Figure 16 show that 
the two models scored above 50% in each of the three 
metrics, namely, the precision, recall and F-measure. 
However, the SAGAN model with higher performance 
values in all the three performance parameters, performed 
better than the GAN model. With the result of the analysis 

all favouring SAGAN, it was selected as the best 
performing model. The Ankara prints from this research 
models reflected that, between the two models studied, the 
SAGAN generated the most promising samples of unique 
Ankara.  Hence, the SAGAN print gives insight that AI 
models can generate prints that reflect unique design 
patterns for African prints. 
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