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Abstract— In this paper, application and
performance evaluation of artificial immune
system-negative selection algorithm for anomalies
detection in distributed sensor networks is
presented. The negative selection algorithm (NSA)
is used to address the challenge of injection of
false data into the distributed sensor network by
an attacker when a sensor node or the key
management system in a network s
compromised. Particularly, the NSA serves as
malicious behavior detection strategy to identify
the misbehaving nodes in the network, Then,
revocation procedures are engaged to revoke the
misbehaving nodes and their keys from the
network immediately after detecting the faulty
nodes or compromise. The performance of the
NSA scheme is evaluated in terms of false
positives, true positives, false negatives, and true
negatives. In all, the results from the experimental
setups show that the NSA performs better than
the CSA in terms of both detection rate and false
positive rate.
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1. Introduction

Over the years, there has been tremendous increase in
wireless  sensor  networks  (WSNs)  applications
[1,2,3,4,5,6,7,8]. Mostly, the sensor nodes in the WSNs are
usually installed physically in insecure areas where they are

susceptible to compromise [9,10,11,12,13,14,15].
Although, some forms of secure key establishments and
management mechanism, such as pairwise keys approach
can be adopted as a solution, however, when a sensor node
is captured, it is presumed that all information and stored
key materials will be exposed to the attacker. In the
pairwise keys management strategy, the pairwise keys are
stored by the potential neighbors of each sensor node
[16,17,18,19]. After an attacker launches attack on one of
its neighbor nodes, the attacker will be able to decrypt the
information coming from other neighbor nodes directly.
However, other links which are not involved directly in this
communication will still be secure. Hence, the resiliency of
the approach is high due to its deterministic nature.
However, the challenge is the injection of false data into the
network by an attacker [20,21,22,23,24]. In this case, an
efficient malicious behavior detection strategy is required to
identify the misbehaving nodes and revoke them and their
keys from the network. In the shared and homogeneous
Wireless Sensor Networks (HWSNs), the resource
constraint nature of sensor nodes limits the computation,
memory, and communication resources which can be
deployed for revocation [25,26,27,28]. Accordingly, in this
paper, an efficient misbehaving detection scheme based on
Artificial Immune System (AIS) for distributed sensor
networks is presented [29,30]. In addition, evaluation of the
performance of the artificial immune system-negative
selection algorithm is presented along with comparison of
the performance of the algorithm with other anomalies
detection methods for distributed sensor networks
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2. Methodology
2.1 Irregularity Detection in Wireless
Network
This paper proposes bio-inspired solution using Negative
Selection Algorithm (NSA) of the Artificial Immune
System (AIS) for anomalies detection in WSNs. For this
reason, an enhanced NSA is implemented and a detector set
that holds anomalous packets only will be defined.
The NSA has been useful for detecting anomalies in
different ways. However, in this work, NSA is used with
some modifications. The system learning is performed for a
large dataset and a detector set is generated. Once this step
is completed, an injection feature in the detector set is
proposed. With the aid of this feature, the detector set can
be updated at any stage. This injection procedure is known

Sensor

as vaccination.
The proposed scheme has learning and testing phases which
are shown in Figure 1 and Figure 2, respectively. The basic

NSA that is capable of doing a single classification is first
implemented and the anomalies from the dataset are
detected. At this point, there exist two classes, namely, self-
set and non-self. Subsequently, the remaining processing is
performed on detected non-self and three different
anomalies are classified; which are, sensor network packets
delayed, packets dropped, and wormholes are detected.

In Figure 1, self-strings are paired with randomly generated
strings using character-by-character pairing. Those strings
that get matched during the pairing are rejected while those
that do not get matched are moved to the detector set.
Vaccination can be used to update detector set anytime, and
this makes it more efficient. Vaccination enables a user to
input any non-self-pattern directly into the detector set, as
part of the strategy which makes the function of the
detector set more effective.
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Figure 1: Proposed NSA learning for anomaly detection
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Figure 2 Proposed NSA for testing anomaly detection

In Figure 2, randomly generated strings are paired with the
detector set using character-by-character pairing. Those
strings that get matched during the pairing are declared as
non-self. Source and destination pairing are carried out on
non-self and they are further classified as sensor network
packets delayed, packets dropped, and wormholes.

2.2 Assumptions and Protocols

In a sensor network, there exists N = (n(t), e(t)), where
n(t) and e(t) denote the set of nodes and edges,
respectively, at any time t. Two nodes, say node A and
node B will be able to communicate if and only if they are
within the radio transmission range of each other. Then, the
route between two nodes in an adhoc network is setup using
any routing protocol. In this paper, an Adhoc On-demand
Distance Vector (AODV) routing protocol is adopted.
Connection is established by this protocol only when it is
necessary to route to destination. In this scenario, Route
Request (RREQ) is forwarded to all nodes within the
network.

Destination or intermediate node replies with a Route Reply
(RREP) control packet. This RREP is routed through the
same path towards the source as that of RREQ. If
eventually, while moving towards the source, the next node
ceases to reply, a Request Error (RERR) packet is
forwarded to the connection initiator. In ad hoc
communication, each node keeps its own routing table,
which contains information about the destination node, all
registered routes, and hop count for a given destination.
Since the transmission is ad hoc, wireless scheme should be

synchronized and this is performed on the basis of medium
contention. In IEEE 802.11 MAC protocol, carrier sensing
is performed by RTS-CTS-DATA-ACK handshake. This
handshake can be disabled for situations where packet size
is the same or smaller than RTS threshold. The default
value for RTS threshold is given as 2347 bytes. This
threshold can be modified by a data traffic pattern. The
highest data transformation rate for IEEE 802.11b and
IEEE 802.11g is 11 and 54Mbit/s, respectively.

2.3 Adding New Nodes
One of the desired features in a scalable key management
scheme of WSNs is the ability to add new sensors to the
network. It is pertinent for the newly joined sensors to
establish secret key with the existing nodes. However, it is
important to verify that the prospective new node to be
added is not an attacker node. The proposed strategy is
robust for adding legitimate sensor to the network. Once
this sensor L, is added, it determines its neighbors using
node discovery, and then sends join request to the cluster
head (CH), for which it has the strongest RSSI values as
given below

L, - CH:id, ,nonce, , List, MACy,, (id;_ || nonce, || List) (1)
Where, id; denotes the identity of the legitimate sensor,
nonce,, denotes the random number string generated by a
MAC,, 1, the
authentication code calculated using the master key on the

legitimate  sensor, denotes message

sensor message. The node L, gets authenticated by the CH
by verifying the MAC. If authentication is successful, CH
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determines the distributed key for each L,'s neighbors and
unicasts the distributed key message to L, and its
neighbors.

24 Cluster Key Setup
Cluster key is utilized by both cluster members (CM) and
CH to securely broadcast messages within cluster. Once a
shared pairwise key between cluster members is
established, CH generates cluster key K., which is sent to
each cluster member. K; is encrypted with the
corresponding shared key between the cluster member and
CH. For instance, CH can send to L, (cluster member) the
following message:

CH - Ly:Egpy 1, (KC)  (2)
Where K. denotes the shared key between the legitimate
sensor and the cluster head

2.5 Key Revocation
Revocation procedures are engaged immediately after
detecting faulty nodes or compromise. The duty of the base
station is to monitor sensor behavior and detect a sensor
compromise or failure. If a node is compromised, the base
station sends this information to the corresponding CH. The
CH then broadcasts to its member the revocation message
which is made up of the list of key ids to be revoked, where
the message is signed with KC. The Revocation message is
formulated as follows:

list(idgy,, idgp,, -, idgr, ), MACkc(list) — (3)
When any legitimate sensor receives a revocation message,
it verifies the MAC to check the integrity of the message
and to find those key ids it the key ring, and remove the
keys (if found). Some links may disappear after key
revocation and the affected nodes must reconfigure those
links by restarting the distributed key discovery phase.

2.6 Performance Evaluation of the Anomaly Detection
Among the numerous performance measures, the most
popular ones for analyzing the performance of NSA and
other AIS algorithms are false positives, true positives,
false negatives, and true negatives. These outlined measures
are defined below:

1. False positives (FPs) are described when self-
patterns are mistakenly identified as non-self-
patterns

il. True positives (TPs) are described when self-
pattern are rightly identified as self-pattern

iii. True negatives (TNs) are described when non-
self-patterns are rightly identified as non-self-
pattern

iv. False negatives (FNs) are described when
non-self-patterns are identified as self-pattern

Detection rate (DR), false positive rate (FPR), and accuracy
can be calculated by these measures. The computation

blueprint is as shown in Equation 4 to Equation 6.
TP

DR = “)
TP+FN
FPR = _FP (5)
FP+TN
TP+TN
Accuracy = ———— ©

3. Results and discussion

3.1 The results of experimentl test for the anomaly
detection

Three set of experiments were conducted to test for the
anomaly detection. In the first experiment, NSA for small
dataset which have normal packets only was implemented.
A total anomaly of 10 was inserted at runtime and was
detected. Simulations were executed in MATLAB 2019 RA
and it took about 8 — 10 seconds to execute. Figure 3
presents the screenshot for the NSA simulation with
random anomalies. The average results computed for the
proposed simulation is presented in Table 1 in comparison
with the popular Agent based intrusion (ABI) and Immune-
inspired detection and recovery (IDR) schemes. The data
presented in Table 1 is depicted graphically in Figure 4.
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Figure 3: NSA simulation with random anomalies
Table 1: Results of anomalies test iteration.
Number of iterations Anomalies detected | Anomalies detected | Anomalies detected
(Proposed Scheme) (ABI) scheme (IDR)
Iteration 1 10 8 6
Iteration 2 10 7 7
Iteration 3 9 4 6
Iteration 4 8 7 6
Iteration 5 9 7 7
Iteration 6 10 8 7
Iteration 7 8 7 5
Iteration 8 10 6 6
Iteration 9 8 7 7
Iteration 10 10 8 7
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Figure 4: Result of anomalies test iterations

3.2 The results of experiment 2 test for the anomaly
detection

In the second experiment, the network sensor dataset
provided by [31] were used. The enhanced NSA was
implemented, thus self and non-self-network packets were
identified. First and foremost, the incoming network strings
are compared with self-strings. Those strings that get
matched are rejected while others are moved to the detector
set. Next, arbitrary strings are compared with the detector
set and those that get matched are identified as non-self.
Figure 5 depicts the wormholes, packet delayed, and packet
dropped found and the average results computed for this
simulation is presented in Table 2.

Table 2: Average results for string matching

SN. Normal Packets Packets Wormholes
packets delayed dropped

1 89 20 31 18

2 87 22 38 19

3 84 25 22 20

4 88 22 22 19

5 89 20 30 18

Note that all values presented inn Table 4.3 are in 103.

The results presented in Table 4.3 are compared with the
original dataset and the values for TP, FN, FP, and TN are
computed. The detection rate for this experiment is
observed to be 97.3%, while the FPR = +2.6%. DR
represents the intermediate result which comprises of the
FP and TN. However, the accuracy of the scheme is
observed to be 89.1%.
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Figure 5: Anomalies detected

3.3 The results of experiment 3 test for the anomaly
detection

In experiment 3, clonal selection algorithm (CSA) is
implemented for comparison with the proposed NSA. The
CSA approach models the production of antigens, which
are then bound to specific antigens. A key lock mechanism
can be deployed in certain cases for binding processes. It is
assumed that those antibodies, which recognize the antigen,
are selected for comparison. After comparison, a detector
set is generated. The working principles of CSA are
presented as follows:

Wormholes Undetected

ii. Execute clonal choice for high affinity
comparison (assume 76% threshold)

iil. Generate detector set for antibodies that match
the threshold

iv. Introduce arbitrarily generated antibodies to
the system

v. Use clonal selection generated detector to

identify self and non-self.
The aim of experiment 3 is to compare the performance of
NSA with CSA on different data subsets and the results of
both FP and anomaly detection is compared as presented in

i. Create initial population of antibodies Table 3.
Table 3: Comparison of NSA and CSA
NSA CSA
Datasets Total packets Anomalous False Anomalous False positives
packets positives packets
Dataset Part 1 5619 3549 +1.80% 3453 +2.20%
Dataset Part2 | 4275 2710 +1.50% 2693 +2.80%
Dataset Part 3 1212 643 +2.10% 657 +1.20%
Dataset Part4 | 9435 5821 +2.50% 5863 +3.10%
Dataset Part 5 1263 866 +1.90% 852 +1.50%
Dataset Part 6 3008 1089 +2.20% 1002 +1.77%
Dataset Part 7 | 4540 1653 +1.20% 1640 +2.32%
Dataset Part 8 1429 463 +2.60% 496 +2.20%
Dataset Part 9 821 283 +1.23% 246 +1.67%
Dataset Part 10 | 4763 1389 +2.60% 345 +2.10%

The performance of both algorithms on particular datasets
is derived from the number of anomalies detected and false
positive ratio. From Table 3, it is shown that for dataset

parts 1,2, 4,5,7,9, and 10, NSA yields better result and
for datasets 3, 6, and 8, CSA performs better.

This comparison is also performed for the entire dataset. In
the first scenario, only some files of the same dataset are
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engaged for comparison. In the second case, results of both
the algorithms for the entire dataset are produced, as
presented in Figure 4.10. Normal and anomalous sensor
network packets, undetected packets, and FPR for both the
algorithms are presented. The results of the experiments

14k
12k

10k

packets

illustrate that the detection rate of NSA is 97.3% and the
FPR is +2.6%, while, for CSA, the detection rate is 88%
and false positive rate is 3.4%. This obviously entails that
NSA performs better that CSA in terms of both detection
rate and false positive rate.

B Negative Selection Algorithm
M Clonal Selection Algorithm

Figure 6: Comparison between NSA and CSA for complete dataset

4. Conclusion
A Dbio-inspired anomalies detection in Wireless Sensor
Network (WSN) solution using Negative Selection
Algorithm (NSA) of the Artificial Immune System (AIS) is
presented. This is used to address the challenge of injection
of false data into the network by an attacker when a sensor
node or the key management system in a WSN is
compromised by an attacker.
Notably, the NSA presented in this paper serves as
malicious behavior detection strategy to identify the
misbehaving nodes in the WSN. Revocation procedures are
engaged immediately after detecting faulty nodes or
compromise. The revocation procedure is used to revoke
the misbehaving nodes and their keys from the network.
The performance of the NSA scheme is evaluated in terms
of false positives, true positives, false negatives, and true
negatives. Equally, the performance of the NSA scheme is
compared with that of clonal selection algorithm (CSA). In
all, the NSA performs better than the CSA in terms of both
detection rate and false positive rate.
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