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Abstract— In this paper, Design and simulation 
of load adaptive energy saving schemes in IP over 
Wavelength-division multiplexing (WDM) networks 
is presented. This research seeks to use the 
Mixed Integer Linear Programming (MILP) 
technique to optimally reduce the total power 
consumption of an IP over WDM network with 
network coding implementation. This will be 
achieved by optimizing the routes each demand 
takes, and optimizing the number and location of 
conventional and network coding ports, for a 
given demand matrix and network topology. The 
architectural and mathematical models to realize 
energy consumption reduction in IP network-
based applications and equipment over WDM 
networks are also presented. Simulation was 
conducted in MATLAB for performance evaluation 
of the models presented in this study. The 
analysis of the energy efficient IP over WDM 
network model was conducted for regular 
topologies, like ring, line, star and full mesh 
options, as well as for two real world core 
network, referred to as “SKYNET” and 
“ENIACNET. The SKYNET has 14 nodes and 21 
links and an average hop count of 2.17, while the 
ENIACNET has 24 nodes and 43 links with an 
average hop count of 3. The traffic demand was 
evaluated using the average network traffic 
demand at various times of the day, according to 
a uniform distribution with values ranging from 
20Gb/s to 120Gb/s. The MILP optimization was 
performed using the ANYLOGIC software running 
on a high performance computing cluster with 16 
cores CPU and 256GB RAM. It is shown that by 
introducing network coding to SKYNET and 
ENIACNET topologies, daily average power 
savings of 27% and 33% are obtained 

respectively. Also, power savings asymptotically 
approach 45% and 22.5% for the ring (and line), 
and star topology respectively.  

Keywords— Energy Efficiency, Mixed Integer 
Linear Programming, Energy Saving Schemes, 
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1. Introduction

Over the last few decades, there has been unprecedented 
growth in network and Internet applications which has 
triggered demand for higher bandwidth and Quality of 
Service (QoS), as well as unparalleled diversification of 
network applications [1,2,3,4,5]. Similarly, innovations and 
developments in IP over Wavelength Division Multiplexing 
(WDM)  networking technologies are focused basically on 
providing cheap and high-bandwidth transmission systems 
(up to 100 Gbps and beyond), flexible capacity utilization 
in IP-based technology, as well as layer-2 technologies and 
control and management solutions for dynamic 
provisioning of services [6,7,8,9,10,11,12,13,14] . 
However, while networking technologies are developing to 
satisfy the growing communication needs of the teeming 
user population across the globe, the attendant growth in 
energy demand of network infrastructures has become 
another concern, especially in this era of demand for green 
technologies [15,16,17,18,19].  
According to studies, the network equipment of 
Information and Communication Technology (ICT) 
consumes about 24 GW of power, which relates to over 1% 
of the global electricity consumption [20,21,22,23,24]. The 
depleting oil reserves have made the cost of energy to 
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increase worldwide [25,26,27,28]. Hence, generally, energy 
reduction is now an important subject and in particular, 
there has been a continuous concern regarding the power 
consumption of different network elements. Moreover, the 
global warming, energy costs, power consumption and heat 
dissipation in the communication systems and data center 
make energy efficiency the main focus in of this paper 
29,30,31,32,33].  
Accordingly, the aim of this study centers on energy 
consumption reduction in IP network-based applications 
and equipment over WDM networks. The study determined 
the energy per bit consumption of IP and Ethernet i.e. the 
routers and switches, develop energy saving models for IP 
over WDM and also develop adaptive routing scheme using 
Mixed Integer Linear Programming and network coding 
partitioning scheme for core communication network via IP 
over WDM . The essence of all the models are to optimize 
the energy efficiency in the IP over Wavelength Division 
Multiplexing (WDM) networking infrastructures. 
 
2. Methodology 
2.1 The modelling of the energy saving scheme in 

IP over Wavelength-Division Multiplexing 
(WDM) networks 

The major focus of the research is the design and 
simulation of adaptive energy saving schemes in IP over 
Wavelength Division Multiplexing (WDM) networks. 
Generally, the implementation of the traditional routing 
schemes requires complex computation to evaluate and 
optimize the energy consumption parameters in WDM 
networks especially, when dynamic optical circuits are 
introduced. This complication is taken further when the 
complete IP traffic matrix is not known. Consequently, the 
deployment of loads in IP over WDM networks uses the 
end-to-end circuit strategy which is typically provisioned 
for special applications. This is achieved at the expense of 
very high bandwidth demands while capacity allocation for 
IP traffic and capacity remains static.  
This research presents modification in node architecture to 
improve energy efficiency (increase energy saving) of IP 
over WDM networks under unicast conditions. To enhance 
the energy efficiency on the node architecture, mixed 
integer linear programming (MILP) technique is used. 
Network coding is facilitated for the unicast bidirectional 
flows between node pairs by the proposed architecture. The 
new architecture also transforms the node functionality 
from “store and forward” to “store, code and forward”, 
where the coding is performed with the flow from opposite 
directions. This can be achieved either at the optical layer 
or the IP layer. 
The butterfly network shown in Figure 1 illustrates the 
abstraction of the concept of network coding. The 
illustration shows that two units of information, 𝑋, and 𝑌, 
are multicasted to two receivers, 𝑑2 and 𝑑1, respectively, 
by the sources 𝑘 and 𝑛. Tracing transmission flow in a link 
𝑚, 𝑢  will always lead to a gridlock operation if all links 

have a unit capacity. An alternative to doubling the link 
capacity in order to resolve the gridlock is to share the link 
capacity by the two flows; encoding the flows by an XOR 
operation in node 𝑚, and multicasting the encoded flow to 
𝑑1 and 𝑑2 from node 𝑢 as shown in Figure 1. 

 
Figure 1 Schematic diagram of the butterfly network 

 

 
Figure 2 Schematic diagram of the three nodes network 
which is an exceptional case of the butterfly network. 

An exceptional case of the butterfly network is presented in 
Figure 2 where each node pairs 𝑛, 𝑑1 , 𝑚, 𝑢 , and 𝑘, 𝑑2  
from Figure 1 are considered as a single node and the links 
connecting them are regarded as storage links rather than 
communication links. This configuration converts the 
butterfly network to a three node network, 𝑛, 𝑚, and 𝑘. It is 
certain that the special butterfly can carry out network 
coding in a unicast scenario. Assuming node 𝑘  takes a 
fancy to send information units 𝑋 to node 𝑛, and node 𝑛 
takes a fancy to send 𝑌 to node 𝑘, then both flows will be 
routed through the intermediate node 𝑚 which can combine 
the flows using XOR gate and multicast back the encoded 
flow to both end nodes. At the receiving ends, each node 
retrieves the information units sent to it by XOR coding the 
received unit with the saved information unit. Resource 
saving is done at the middle node where coding is 
performed. 
The proposed approach is further described in Figure 3a 
and Figure 3b. The modification in the node architecture is 
described in Figure 3b. The same ports as the conventional 
routing approach will be used at both the originating and 
terminating nodes. However, a single port that implements 
the coding functionality will substitute the two conventional 
ports at the intermediate nodes. Subsequently in this 
research, the term conventional port (architecture) will be 
used to refer to the current implementation while Network 
Coding (NC) (architecture) will be used to refer to the 
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Figure 4 Network coding node architecture. 

The flows encoding is performed by the XOR unit. In the 
optical layer, the transmitter is connected to a coupler and 
an amplifier which functions as multicast and compensator 
for power loss due to splitting. This approach supports long 
distance transmission effectively. The IP layer is where the 
coding operation is done, hence, the new coding scheme is 
implemented as an NC card which is plugged in the IP 
router chassis to support the conventional router cards. The 
storage unit is used to store the original information while 
the XOR decodes the received encoded flow; these happen 

on both the source and destination nodes. It should be noted 
that the storage functionality is already in existence in 
conventional ports; the XOR functionality is now part of 
processing and the coding is done on the IP layer which 
makes the additional storage and the XOR code come at a 
low cost. The IP implementation is more favorable to 
support this approach since all optical coding gates and 
controllable optical delay buffers are still in their early 
stage. 
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is assumed in this research that the management and control 
overhead is negligible since it can be carried out as a result 
of system software upgrade. 
3.2 The mixed integer linear programming model 

for optimizing the energy saving scheme 
This research seeks to use the Mixed Integer Linear 
Programming (MILP) technique to optimally reduce the 
total power consumption of a non-bypass IP over WDM 
network with previously mentioned network coding 
implementation. This will be achieved by optimizing the 
routes each demand takes, and optimizing the number and 
location of conventional and NC ports, for a given demand 
matrix and network topology. 
It is assumed that the network is totally synchronized, 
which means that the information units to be XOR coded 
are buffered before being coded and they arrive at the same 
time. The randomness of the arrival process determines the 
requirement for buffering. The delay introduced by XOR 
coding process is damped by the buffering process. It is 
apposite to note that the upshot of this assumption is the 
introduction of a lower bound on power consumption. In 
real-time communication requirements, the coding process 
could be forced to encode only traffic with stream of zero, 
thereby minimizing the potential of network coding with 
respect to energy. The total power consumption is defined 
as; 

𝑃  ∑ 𝑃 𝑌  𝑃 𝑋  𝑃𝑜  𝑃𝑚𝑑∈

 ∑ 𝑃 𝑤  𝑃 𝐴 𝑓∈  (1) 
Where 𝑃  = total power consumption of the network 𝑊 , 
𝑃  = power consumption of a conventional router port, 𝑌  = 
number of conventional ports at node 𝑚, 𝑃  =  power 
consumption of NC router port, 𝑋  = number of NC ports 
at node 𝑚, 𝑃𝑜 = power consumption of and optical switch, 
𝑃𝑚𝑑  = power consumption of a multiplexer/de-
multiplexer, 𝑃  = power consumption of a transponder, 𝑤  
= total traffic flow carried on physical link, 𝑃  = power 
consumption of erbium-doped fiber amplifier (EDFA), 𝐴  
= the number of EDFAs on physical link 𝑚, 𝑛 , 𝑓  = the 
number of fiber on physical link 𝑚, 𝑛 . The analytical 
expressions for the components of the total power 
consumption are hereby presented. Let the total power 
consumption of conventional router port is expressed as: 

∑ 𝑃 𝑌∈   (2) 
Let the total power consumption of NC router port is 
expressed as: 

∑ 𝑃 𝑋∈   (3) 
Let the total power consumption of optical switches is 
expressed as: 

∑ 𝑃𝑜∈   (4) 
Let the total power consumption contribution from 
multiplexers and de-multiplexers be expressed as: 

∑ 𝑃𝑚𝑑∈   (5) 
Let the total power consumption of transponders be 
expressed as: 

∑ ∑ 𝑃 𝑤∈∈   (6) 
And the power consumption of all the EDFAs be expressed 
as: 

∑ ∑ 𝑃 𝐴 𝑓∈∈   (7) 
Subject to: 

∑ 𝑏  ∈  ∑ 𝑏  ∈  
1   ∶         𝑚 𝑠

1 ∶          𝑚 𝑑
0   ∶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

∀𝑠, 𝑑, 𝑚 ∈ 𝑁 
Where 𝑏 ,  is the binary equivalent of 𝑤 , . 𝑏 , 1, if 
𝑤 , 0 , 𝑏 , 0  otherwise. 𝑤 ,  is the traffic flow 
between node pair 𝑠, 𝑑  that traverses the physical link 
𝑚, 𝑛  in Gbps. 

The constraint in Equation 8 denotes the flow conservation 
constraint where the total incoming traffic equates the 
outgoing traffic for all nodes apart from the source and 
destination nodes. The flow of traffic demand that traverses 
a link based on the binary variable 𝑏   can be calculated 
by the constraint defined as; 

𝑤  𝜆 𝑏    (9) 
 ∀𝑠, 𝑑 ∈ 𝑁, ∀𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁                         

Where 𝜆  is the volume of demand 𝑠, 𝑑  in multiples of 
wavelength.  The total traffic on a given link which is 
denoted by the total flow of all demands passing through 
that link is expressed as: 

𝑤  ∑ ∑ 𝑤∈ ∶∈  (10)
 ∀𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁    

In order to ensure the link capacity conservation, the 
constraint in Equation 10 is applied. The total flow on a 
link must not exceed the total capacity of al fiber on that 
link. 

∑ ∑ 𝑤∈ ∶∈  𝑊𝐵𝑓      (11) 
Where 𝐵 is the wavelength capacity. The MILP model will 
be relaxed for now, hence, Equation 12 and Equation 13 
will be used for the MILP implementation instead of the 

more accurate ∑ ∑ ∈  ∈  and ∑ ∑ ∈  ∈ , 

respectively, which select the next integer greater than the 
real value. 

𝑁𝑝𝑜 ∑ ∑ ∈  ∈   (12) 

𝑁𝑝𝑖 ∑ ∑ ∈  ∈    (13)  

At this point, the number of ports leaving and entering a 
node is governed by Equation 3.10 and Equation 13 
respectively. It should be noted that router ports have a pair 
(Tx and Rx) components; and under asymmetric traffic 
condition, the number of ports required is determined by 
the largest between the outgoing and incoming traffic 
which is determined as: 

𝑁𝑝 max 𝑁𝑝𝑜 , 𝑁𝑝𝑖  (14) 
∀𝑚 ∈ 𝑁, 𝑛 ∈ 𝑁     

Then, the total number of conventional ports is given by: 
𝑌  ∑ 𝑁𝑝∈  (15)

 ∀𝑚 ∈ 𝑁  
  

𝑐 𝑏  (16)
   

𝑐 𝑏  (17)
   

  
𝑐 𝑏 𝑏 1 (18) 

∀𝑠, 𝑑 ∈ 𝑁, ∀𝑚, 𝑛, 𝑘 ∈ 𝑁 ∶ 𝑚 𝑛 𝑘
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the network demands are equal, which means that 𝜆  𝜆 
∀𝑠, 𝑑 ∈ 𝑁, 𝑠 𝑑, then, 

∑ ∑ 𝑤∈∈  𝜆 ∑ ∑ 𝑏 ,∈∈  𝜆ℎ    
 (34) 

This implies that the power consumption of a single flow 
can be represented as; 

𝑃  
 

𝜆ℎ     (35) 

Then, the overall network power consumption can be 
expressed as: 

𝑃  
 

𝜆 ∑ ∑ ℎ∈∈   (36) 

Let 𝑃  
 

, and 𝜆  represents a single hop power 

consumption and 𝑃  𝑃 , ∀𝑠, 𝑑 ∈ 𝑁, 𝑠 𝑑 , then the 
power consumption can be expressed as: 

𝑃  𝑃 ∑ ∑ ℎ∈∈      (37) 

Therefore, the hop count of the network traffic demand can 
be expressed as a function of the overall hop count ℎ which 
is expressed as; 

∑ ∑ ℎ∈∈ 𝑁 𝑁 1
∑ ∑

𝑁 𝑁 1 ℎ  (38) 

Then, power consumption of IP over WDM network can be 
expressed as: 

𝑃  𝑃 ℎ𝑁 𝑁 1   (39) 
2.4.2 Network Coding Scenario 
For IP over WDM network implemented with network 
coding, both flows of the bidirectional demands are routed 
through the same path, which is the reason network coding 
is performed at the intermediate nodes. The implication in 
this case is that the power consumption of both flows of the 
bidirectional demand 𝑠, 𝑑  and 𝑑, 𝑠  is expressed as: 

𝑃𝑠𝑑  2
 

𝜆  
 

𝜆 ℎ 1 ,

 ∀𝑠, 𝑑 ∈ 𝑁, 𝑠 𝑑    (40) 
From Equation 40, the first term accounts for the power 
consumption of end nodes where a conventional port is 
used to send and receive the flows at each end. Since the 
power consumption of the XOR gate and storage at the end 
nodes are negligible, they are eliminated from this analysis. 
The second term is imputed due to the intermediate nodes 
where coding is carried out. Notice that Equation 40 is 
evaluated for all values of 𝑠 𝑑  instead of 𝑠 𝑑 . 𝑃𝑠𝑑 
computes the total power consumed for the flow 𝑠, 𝑑  and 
𝑑, 𝑠 . Hence, the power consumption can be rearranged 

and expressed as: 

𝑃𝑠𝑑 2𝜆
 

1  
 

 
    (41) 

If 𝑟  
 

 
, and denotes the ration of power consumption 

of the network coding scheme, and the conventional 
scheme, then the power consumption of the bidirectional 
demand can be expressed as: 

𝑃𝑠𝑑 2𝑃 1 𝑟    (42) 

Hence, the network total power consumption, taking 
cognizance of network coding is expressed as: 

𝑃 2 ∑ ∑ 𝑃  𝑃 𝑟∈∈  (43) 

Resulting in: 

𝑃 2 ∑ ∑ 𝑃 1∈∈ ∑ ∑ 𝑃 ℎ∈∈  (44) 

If all demands in the network have equal value, meaning 
that 𝑃  𝑃 , ∀𝑠, 𝑑 ∈ 𝑁 , then the total power 
consumption becomes; 

𝑃 2𝑃 1     (45) 

𝑃  𝑃 𝑁 𝑁 1 1 ℎ 1   (46) 

Let power savings be denoted by 𝜙, then, 𝜙 is expressed as: 

𝜙 1 1    (47) 

Generally, when the bidirectional traffic demand volume is 
randomly distributed, the case of equal average traffic 
demands has better power efficiency compared to the 
random demand case. For random traffic demands, 
Equation 43 is rewritten as: 

𝑃
 ∑ ∑ 2max 𝑃 ,∈∈ 𝑃

max 𝑃 , 𝑃 𝑟 ℎ 1      (48) 
Where the first term is responsible for the power 
consumption at end nodes which uses conventional ports, 
and the second term is responsible for the power 
consumption at intermediate nodes which make use of NC 
ports. Demands are treated in pairs; this is the reason 
𝑑 𝑠  is introduced under the summation and also the 

equation being multiplied by two. Hence, 𝑚𝑎𝑥 𝑃 , 𝑃  
can be rewritten as: 

𝑚𝑎𝑥 𝑃 , 𝑃  
 

𝜆 , 𝜆  (49) 

𝑚𝑎𝑥 𝜆 , 𝜆 max 𝜆 𝛥 , 𝜆 𝛥  𝜆
max 𝛥 , 𝛥    (50) 

Where 𝜆 denotes the average traffic of the entire network. 
Thus, the total power of the NC scenario can be expressed 
as: 

𝑃 2
 

∑ ∑ 𝜆 𝑚𝑎𝑥 𝜆 , 𝜆 1 𝑟∈∈   (51) 

Which can be expressed as:  
𝑃

 𝑃 𝑁 𝑁 1 1 𝑟

2
 

∑ ∑ 𝑚𝑎𝑥 𝛥 , 𝛥 1 𝑟∈∈   (52) 

Where the first and second components of Equation 3.50 
represent the power consumption of the network coded 
case, when the traffic demand all equate to average. Let 𝑃   
and 𝑃 denote the first part and the second part of Equation 
52, respectively. Then, 

𝑃  𝑃 𝑁 𝑁 1 1 𝑟
   (53) 

𝑃  2
 

∑ ∑ 𝑚𝑎𝑥 𝛥 , 𝛥 1 𝑟∈∈ (54) 

If 𝐻  denotes a set of demands with minimum hop paths of 
𝑘 hops, then Equation 54 can be re-written as: 

𝑃  
 

𝑟 ∑ 𝑚𝑎𝑥 𝛥 , 𝛥, ∈

2𝑟 ∑ 𝑚𝑎𝑥 𝛥 , 𝛥, ∈ ⋯

𝑘 1 𝑟 ∑ 𝑚𝑎𝑥 𝛥 , 𝛥, ∈

2
 

∑ ∑ 𝑚𝑎𝑥 𝛥 , 𝛥∈∈     (55) 

Given that 𝑔 𝜆  𝑚𝑎𝑥 𝛥 , 𝛥 , then, 
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𝑃  
 

∑ ∑ 𝑘 1 𝑟𝑔 𝜆, ∈

2 ∑ ∑ 𝑔 𝜆∈∈    (56) 

The given topology (reflected in 𝐻 ) and the given traffic 
volume distribution 𝑔 𝜆  determines the value of 𝑃 . 
This results in three lower bounds. First by setting all hop 
counts to minimum, second, by setting the traffic to a value 
that reduces the total power, and finally, setting the hop 
count and the traffic component to their minimum values. 
The similar effect applies to the three upper bounds. 
The bounds for total power are defined as: For any given 
topology, the minimum value is defined when 𝑔 𝜆
 𝑚𝑎𝑥 𝛥 , 𝛥 0  when 𝛥  𝛥 0 . It should be 
noted that these values are reached when demands are 
equal. This results in the expression of 𝑃 as: 

𝑃 𝑃 𝑁 𝑁 1 1 𝑟  (57) 

The effect of Equation 57 reduces the scenario to the 
previous scenario of equal average demands. 
In order to attend a generic traffic demand and optimal 
topology, the following minimum value is reached when all 
demands have a single hop route ℎ 1  when the network 
is connected in full mesh. 

𝑃 𝑃 𝑁 𝑁 1  (58) 
This implies that power consumption is directly 
proportional to the variation. It is worthy to state also that, 
when a set of traffic demand is given with variation, the 
lowest power consumption is attained when bidirectional 
demands with the highest variance is allocated to the route 
with minimum hop count. Similarly, the maximum value of 
𝑃  can be computed by considering the topology and traffic 
dimensions. Consider the traffic dimension beginning from 
Equation 48 with the fact that max 𝑃 , 𝑃

 
 

𝜆  where 𝜆  denotes the upper limit of the 

traffic value, supposing there is uniform traffic distribution 

𝑃 2
 

𝜆 ∑ ∑ 1 𝑟∈∈  (59) 

This results in: 

𝑃
 

𝜆 𝑁 𝑁 1 1 𝑟     (60) 

Upper bound regarding maximum hop count and the exact 
is achieved by setting the hop count for each demand to the 
highest in the network. This implies that ℎ ,  ℎ  in 
Equation 54   will result  in: 

𝑃

2
 

1 𝑟 ∑ ∑ 𝑔 𝜆∈∈  

 (61) 
Hence, the bound for the total power consumption is 
transformed to: 

𝑃 𝑃 𝑁 𝑁 1 1 𝑟 2
 

1

𝑟 ∑ ∑ 𝑔 𝜆∈∈        (62) 

If both the maximum traffic and hop count are considered, 
the following bound is certain. 

𝑃
 

𝜆 𝑁 𝑁

1 1 𝑟       (63) 

The upper bound derived by considering the maximum hop 
count is more compact than the one considering the 

maximum possible traffic demand, due to the lower 
variance the top count has with respect to the traffic 
demand variance. 
For the partitioning approach, a closed from expression is 
developed the same way as the zero padding approach. The 
number of NC ports 𝑋  in the network for partitioning 
scenario is expressed as: 

𝑋  ∑ ∑ min 𝜆 , 𝜆 ℎ 1∈∈  (64) 

The traffic at source and destination nodes and the 
remaining traffic at the partitioning process at intermediate 
nodes will be covered by the number of conventional ports. 
Thus, 

𝑌  ∑ ∑ 𝜆∈∈ ∑ ∑ ℎ∈∈

1 |𝜆 𝜆 |  (65) 

and the total power is expressed as: 

𝑃  ∑ ∑ min 𝜆 , 𝜆 ℎ 1∈∈

∑ ∑ 𝜆∈∈  ∑ ∑ ℎ∈∈

1 |𝜆 𝜆 |   (66) 
Combining the terms results in: 

𝑃  ∑ ∑ 𝜆∈∈ ∑ ∑ ℎ∈∈

1 𝑚𝑖𝑛 𝜆 , 𝜆  |𝜆 𝜆 |    (67) 

The terms in Equation 67 can be rearranged to have: 

𝑃  𝑁 𝑁 1 𝜆 ∑ ∑ ℎ 1∈∈ 𝑟

𝑚𝑖𝑛 𝜆 , 𝜆 |𝜆 𝜆 |    (68) 

𝑃 𝑁 𝑁 1 𝜆 ∑ ∑ ℎ 1∈∈ ∆

𝑟 𝑚𝑖𝑛 𝜆 , 𝜆  (69) 
Note that ∆ |𝜆 𝜆 |   𝑚𝑎𝑥 𝜆 , 𝜆
𝑚𝑖𝑛 𝜆 , 𝜆 . Substituting this is Equation 69 results in: 
𝑃

 𝑁 𝑁 1 𝜆 ∑ ∑ ℎ 1∈∈ 𝑚𝑎𝑥 𝜆 , 𝜆

𝑚𝑖𝑛 𝜆 , 𝜆 𝑟 𝑚𝑖𝑛 𝜆 , 𝜆  (70) 
Collecting like terms results in: 

𝑃  𝑁 𝑁 1 𝜆 ∑ ∑ ℎ∈∈

1 𝑚𝑎𝑥 𝜆 , 𝜆 𝑟 1 𝑚𝑖𝑛 𝜆 , 𝜆   (71) 
Let 𝑔 𝜆  denotes the maximum traffic imbalance in a 
network where the network coding ports and conventional 
ports consume same amount of power. 𝑔 𝜆   is defined 
as: 

𝑔 𝜆  𝑚𝑎𝑥 𝜆 , 𝜆 𝑟 1 𝑚𝑖𝑛 𝜆 , 𝜆  (72) 
The total power can further be modified as: 

𝑃  𝑁 𝑁 1 𝜆  ∑ ∑ ℎ 1∈∈ 𝑔 𝜆  (73) 

If the Equation 72 is minimized, the lower bound 
considering the traffic dimension can be obtained. 

𝑔 𝜆  �̅� 𝑟 1 �̅� 𝑟�̅�   (74) 
�̅�  is the traffic volume between 𝑠, 𝑑  when the maximum 
value is the same as the minimum value and the average. 
The total power can now be expressed as: 

𝑃  𝑁 𝑁 1 𝜆 ∑ ∑ ℎ 1∈∈ �̅� 𝑟  (75) 

By introducing the Chebyshev’s inequality presented in 
Equation 76, where a lower bound on the average of the 
inner product of two vectors of size 𝑛 is given as: 
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3.2.4 Line Topology 
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From the analysis above, it has been shown that power 
savings asymptotically approach 45% and 22.5% for the 
ring (and line), and star topology respectively. If 𝑟 1 
which implies that network coding port is as efficient as 
conventional ports, then the savings increase to 50% and 
25% respectively. 
 
4. Conclusion 
The design and simulation of adaptive energy saving 
schemes in IP over Wavelength Division Multiplexing 
(WDM) networks is presented. Particularly, modification in 
node architecture to improve energy efficiency (increase 
energy saving) of IP over WDM networks under unicast 
conditions is presented. To enhance the energy efficiency 
on the node architecture, mixed integer linear programming 
(MILP) technique is used. The architectural and 
mathematical models to realize energy consumption 
reduction in IP network-based applications and equipment 
over WDM networks are also presented. The models 
included approach to determine the energy per bit 
consumption of IP and Ethernet i.e. the routers and 
switches, as well as energy saving models for IP over 
WDM. Also, adaptive routing scheme using Mixed Integer 
Linear Programming and network coding partitioning 
scheme for core communication network via IP over WDM 
are presented. The essence of all the models are to optimize 
the energy efficiency in the IP over Wavelength Division 
Multiplexing (WDM) networking infrastructures. 
Simulation was conducted in MATLAB for performance 
evaluation of the models presented in this study and the 
results demonstrated the effectiveness of the models in 
reducing the energy consumption in the IP over WDM 
network. 
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