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Abstract— In this paper, evaluation of energy 
demand and lifespan of battery-powered ZigBee 
IEEE 802.15.4 compliant sensor node for Internet 
of Things-based applications is presented. The 
sensor node energy consumption is modelled 
with four states, namely; transmit, receive, 
measure and sleep state. The sensor node runs in 
each of the four states in each cycle with a given 
cycle time and duty cycle. Mathematical model for 
computing the energy consumed in each of the 
states and the battery lifespan and other relevant 
parameter are presented. Specifically, the energy 
consumption parameters of Crossbow MICAz 
ZigBee IEEE 802.15.4 compliant sensor node was 
used for the case study numerical computations.  
The results show that with duty cycle of 1 %, the 
data capture (measure) state has the highest 
energy consumption of 66.96 mJ per cycle 
followed by the transmit state with per cycle 
energy consumption of 40.6377 mJ. The energy 
consumed per day is 27464.2 mJ and the battery 
lifespan is 22,084 hours and in this lifespan the 
sensor node would have run 195,581 cycles and 
transmitted a total of  16,819,925 bits of data if it 
transmits 86 bits per cycle. Als, the results show 
that if active states time and current parameter 
values are maintained while the duty cycle is 
increased, the battery lifespan decreases but the 
number of bits transmitted over the battery 
lifespan increases. This is due to rapid increase in 
the number of cycles per day with increase in duty 
cycle is increased.  Also, the energy consumption 
per day increases with increase in the duty cycle. 
In all, the specific impact of increase in the duty 
cycle on the energy consumption of the sensor 
node depends on which parameters are kept 
constant and which ones are varied. 
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1.  Introduction 

 
In recent years, smart applications are 
increasingly being adopted across the globe [1,2, 
3,4, 5, 6, 7,8,9]. The growing smart application 
industry relies on robust wireless sensors 
[10,11,12,13,14,15,16,17,18,19]. The sensors on 
their own are basically meant to capture 
parameters of their immediate environment and 
possibly store the data or allow the data to be 
accessed and utilised in other sub-units of the 
system [20,21,22,23,24,25,26,27,28,29]. In more 
advanced sensor nodes, additional functionalities 
are incorporated, such as transceiver and 
microcontroller that can enhance the capabilities 
of the sensor nodes.  
 
In addition, the sensors are in many cases battery-
powered which limits the lifespan of such sensors 
unless energy harvesting recharge mechanism is 
included [30,31,32,33,34]. In such cases without 
battery recharge, the possible duration of the 
battery is dependent upon many factors. One, the 
battery much provide transmitter power which 
will be adequate to withstand the various 
propagation losses the wireless signal will 
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denoted as 𝑇஺, 𝐼஺  and 𝐸஺  respectively. Then, the 
duty, 𝐷஼௒  in %  and the energy demand, 
𝐸ெ, 𝐸், 𝐸ோ  and 𝐸ௌ  given as follows; 

𝑇஺ ൌ 𝑇ெ ൅ 𝑇் ൅ 𝑇ோ      (3) 

𝑇ௌ ൌ 𝑇஼௒ െ 𝑇஺   ൌ ቀଶସ ሺ்೘ೞಹೃሻ  

௡಴ೊ
ቁ  െ 𝑇஺  

 (4) 

𝐷஼௒ ൌ ቀ ்ಲ

்಴ೊ
ቁ  100 %       (5) 

𝐸ெ ൌ ሺ𝐼ெሻሺ𝑇ெሻ 𝑉௢௣  (6) 
𝐸் ൌ ሺ𝐼்ሻሺ𝑇்ሻ 𝑉௢௣  (7) 
𝐸ோ ൌ ሺ𝐼ோሻሺ𝑇ோሻ 𝑉௢௣  (8) 
𝐸ௌ ൌ ሺ𝐼ௌሻሺ𝑇ௌሻ 𝑉௢௣  (9) 

𝐸஺ ൌ 𝐸ெ ൅ 𝐸் ൅ 𝐸ோ     (10) 
2.2  Determination of the battery-powered 

device lifespan 
The LeIoT device is powered by a battery with 
rated capacity 𝐶஻ோ஼  in mAh and percentage of 
useful capacity, 𝐶஻௎௉ , then the effective battery 
capacity,  𝐶஻ா஼  in mAh and the LeIoT device 
lifespan in hours,  𝑇௅௛௥  are given as follows; 

𝐶஻ா஼ ൌ  
ሺ஼ಳೌ೟ሻሺ஼ಳೆುሻ

ଵ଴଴
  (11) 

𝐼஺௏  ൌ ൛൫𝑇𝑇∗𝐼𝑇 ൯൅൫𝑇𝑅∗𝐼𝑅 ൯൅൫𝑇𝑀∗𝐼𝑀 ൯ ൅൫𝑇𝑆∗𝐼𝑆 ൯ൟ 
்ಾା்೅ା்ೃ ା்ೄ

  (12) 

𝑇௅௛௥  ൌ ஼ಳಶ಴ 
ூಲೇ

  (13) 

Furthermore, the LeIoT device lifespan in days,  
𝑇௅ௗ and in years,  𝑇௅௬ are given as follows; 

𝑇௅ௗ  ൌ 24ሺ஼ಳಶ಴ሻ 
ூಲೇ

  (14) 

𝑇௅௬  ൌ 8760ሺ஼ಳಶ಴ሻ 
ூಲೇ

  (15) 

The energy consumption parameters of Crossbow 
MICAz ZigBee IEEE 802.15.4 compliant sensor 

node (as presented in Table 1) is used in this 
study  for the numerical examples. 

   
Table 1 The energy consumption parameters 

of  ZigBee IEEE 802.15.4 compliant sensor 
nodes used in this study [70,71] 

S/N 
 

Parameter 

Crossbow MICAz
ZigBee IEEE 

802.15.4 compliant 
sensor node 

1 Data rate 250 kb 
2 Sleep mode 15 μA 
3 Processor 

consumption 
8 mA  

4 Transmission 17.4 mA 
5 Reception 19.7  
6 Supply voltage  2.7 

 
3  Results and discussion 

The requisite impute parameters for the case 
study sensor node were used to compute the 
energy consumption, lifespan and other relevant 
parameters and the results are presented and 
discussed. The results for the power profile, as 
well as the energy consumed per cycle and per 
day in each of the four states of the Crossbow 
MICAz ZigBee IEEE 802.15.4 compliant sensor node 
are shown in Table 2.  The results in Table 2 
show that the data capture (measure) state has the 
highest energy consumption of 66.96 mJ per 
cycle followed by the transmit state with per 
cycle energy consumption of 40.6377 mJ , as 
shown in Figure 3.  

Table 2  The results for the power profile, as well as the energy consumed per cycle and per day in 
each of the four states of the Crossbow MICAz ZigBee IEEE 802.15.4 compliant sensor 

node 

Sensor Node 
Mode 

Current , I 
(mA) 

Time, t (mS)  Power (W) 
Energy (mJ) 

consumed per 
cycle 

Energy (mJ) consumed 
per day 

Transmit 17.4 865 0.04698 40.6377 8637.39 

Receive 19.7 100 0.05319 5.319 1130.53 

Measure 8 3100 0.0216 66.96 14232.09 
Sleep  0.015  402435  0.0000405 16.2986 3464.21 

Total 
      129.22 

27464.21508 
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Figure 3. Per cycle energy consumption in each of the four states of the Crossbow MICAz ZigBee IEEE 

802.15.4 compliant sensor node 
 

The active states time and current parameter 
values are maintained while the duty cycle is 
varied from 1 % to 30 %. The results on the 
impact of duty cycle on the cycle time and 
number of data capture for the  Crossbow MICAz 
ZigBee IEEE 802.15.4 compliant sensor node are 
shown in Table 3 and Figure 4. The results in 
Table 3 and Figure 4 show  that increasing the 
duty cycle while maintaining the active state time  
duration amounts to reduction in the cycle time 
and increase in the number of cycles (or number 
of data capture) per day. 
The results on the impact of duty cycle on the 
energy consumed per cycle  for the  Crossbow 
MICAz ZigBee IEEE 802.15.4 compliant sensor 
node are shown in Table 4 and Figure 5. The 
results in Table 4 and Figure 5  show  that 
increasing the duty cycle while maintaining the 
active state time and current parameter values 
amounts to reduction in the sleep state time and 
cycle time and hence decrease in the energy 
consumed in the sleep time and energy consumed 

per cycle. In this case, the energy consumed in 
the active state is constant. 
The results on the impact of duty cycle on energy 
consumed per day for the  Crossbow MICAz 
ZigBee IEEE 802.15.4 compliant sensor node are 
shown in Table 5 and Figure 6. The results show 
that the resultant effect of the increase in the duty 
cycle is increase in the daily energy consumption. 
This seems to contradict the decrease in the per 
cycle energy consumption with increase in duty 
cycle. The increase in per day energy 
consumption is due to the rapid increase in the 
number of cycles per day.  
The results on the impact of duty cycle on the 
battery lifespan and number of bits transmitted 
for the Crossbow MICAz ZigBee IEEE 802.15.4 
compliant sensor node are shown in Table 6, 
Figure 7 and Figure 8. The results in Figure 7 and 
Figure 8 show that while the battery lifespan 
decreases with increase in duty cycle the total 
number of bits transmitted over the battery 
lifespan increases with the duty cycle. This is due 
to the rapid increase in the number of cycles per 
day as the duty cycle increases. 

 
Table 3 The results on the impact of duty cycle on the cycle time and number of data capture for 

the  Crossbow MICAz ZigBee IEEE 802.15.4 compliant sensor node 
Duty Cycle 

(%) 
Cycle Time (s) 

Number of 
cycles per day 

Duty Cycle 
(%) 

Cycle Time (s) 
Number of 

cycles per day 
1  406.5 212.5461 16 25.40625  3400.738

2  203.25 425.0923 18 22.58333  3825.83

4  101.625 850.1845 20 20.325  4250.923

6  67.75 1275.277 22 18.47727  4676.015

Transmit Receive Measure Sleep

Energy (mJ) consumed per
cycle 40.6377 5.319 66.96 16.2986175
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8  50.8125 1700.369 24 16.9375  5101.107

10  40.65 2125.461 26 15.63462  5526.199

12  33.875 2550.554 28 14.51786  5951.292

14  29.03571 2975.646 30 13.55  6376.384

 

 
Figure 4 The graph of cycle time and number of data capture versus duty cycle for the  Crossbow 

MICAz ZigBee IEEE 802.15.4 compliant sensor node 
Table 4 The results on the impact of duty cycle on the energy consumed per cycle  for the  

Crossbow MICAz ZigBee IEEE 802.15.4 compliant sensor node 
 

Duty Cycle 
(%) 

Eactv (mJ) 
per cycle 

Eslp (mJ) 
per cycle 

Eperiod 
(mJ) per 

cycle 

Duty Cycle 
(%) 

Eactv (mJ) 
per cycle 

Eslp (mJ) 
per cycle 

Eperiod 
(mJ) per 

cycle 

1 112.9 16.3 129.2 16.0 112.9 0.9 113.8 

2 112.9 8.1 121.0 18.0 112.9 0.7 113.7 

4 112.9 4.0 116.9 20.0 112.9 0.7 113.6 

6 112.9 2.6 115.5 22.0 112.9 0.6 113.5 

8 112.9 1.9 114.8 24.0 112.9 0.5 113.4 

10 112.9 1.5 114.4 26.0 112.9 0.5 113.4 

12 112.9 1.2 114.1 28.0 112.9 0.4 113.3 

14 112.9 1.0 113.9 30.0 112.9 0.4 113.3 
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Figure 5 The graph of energy consumed per cycle versus duty cycle for the  Crossbow MICAz 

ZigBee IEEE 802.15.4 compliant sensor node 
 
 

Table 5 The results on the impact of duty cycle on energy consumed per day for the  Crossbow 
MICAz ZigBee IEEE 802.15.4 compliant sensor node 

 

Duty 
Cycle 
(%) 

Energy 
(mJ) 

consumed 
per day 

Duty 
Cycle 
(%) 

Energy 
(mJ) 

consumed 
per day 

1 27464.2 16 386939.4 

2 51429.2 18 434869.5 

4 99359.3 20 482799.5 

6 147289.3 22 530729.5 

8 195219.3 24 578659.6 

10 243149.4 26 626589.6 

12 291079.4 28 674519.6 

14 339009.4 30 722449.7 
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Figure 6 The graph of energy consumed per day versus duty cycle for the  Crossbow MICAz ZigBee 
IEEE 802.15.4 compliant sensor node 

 
Table 6 The results on the impact of duty cycle on the battery lifespan, number of bits transmitted 

and energy consumed  for the  Crossbow MICAz ZigBee IEEE 802.15.4 compliant sensor 
node 

 

Duty 
Cycle 
(%) 

Battery 
Lifespan 

(hour) 

Number 
of cycles 
in battery 
lifespan 

Number of 
bits 

transmitted in 
battery 

lifespan (bits) 

Energy (mJ) 
consumed in 

battery 
lifespan 

Duty Cycle 
(%) 

Battery 
Lifespan 

(hour) 

Number of 
cycles in 
battery 
lifespan 

Number of 
bits 

transmitted 
in battery 
lifespan 

(bits) 

Energy (mJ) 
consumed in 

battery 
lifespan 

1  22,084 195,581 16,819,925 25,272,000 16 1,568 222,111 19,101,534 25,272,000 

2  11,793 208,888 17,964,338 25,272,000 18 1,395 222,334 19,120,746 25,272,000 

4  6,104 216,244 18,597,000 25,272,000 20 1,256 222,513 19,136,144 25,272,000 

6  4,118 218,813 18,817,908 25,272,000 22 1,143 222,660 19,148,761 25,272,000 

8  3,107 220,120 18,930,341 25,272,000 24 1,048 222,782 19,159,288 25,272,000 

10  2,494 220,912 18,998,449 25,272,000 26 968 222,886 19,168,204 25,272,000 

12  2,084 221,443 19,044,127 25,272,000 28 899 222,975 19,175,853 25,272,000 

14  1,789 221,824 19,076,888 25,272,000 30 840 223,052 19,182,488 25,272,000 

 
 

 

Energy	Consumed	per	day	(mJ)=	23965(Duty	Cycle)	+	3499.2
R²	=	1
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Figure 7 The graph of battery lifespan versus duty cycle for the  Crossbow MICAz ZigBee IEEE 

802.15.4 compliant sensor node 
 
 

 
Figure 8 The graph of number of bits transmitted in battery lifespan  versus duty cycle for the  

Crossbow MICAz ZigBee IEEE 802.15.4 compliant sensor node 
 

4.  Conclusion  
 

The energy consumption and battery lifespan, as 
well as the impact of duty cycle on the energy 
consumption and data communication capability 
of a ZigBee IEEE802.15.4 compliant sensor node 
is presented. The sensor node energy 
consumption is modelled with four states and 
which it runs in each cycle with a given cycle 
time and duty cycle. The results show that if 
active states time and current parameter values 

are maintained while the duty cycle is increased, 
the battery lifespan decreases but the number of 
bits transmitted over the battery lifespan 
increases. This is due to rapid increase in the 
number of cycles per day with increase in duty 
cycle is increased.  Also, the energy consumption 
per day increases with increase in the duty cycle. 
In all, the specific impact of increase in the duty 
cycle on the energy consumption of the sensor 
node depends on which parameters are kept 
constant and which ones are varied. 
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